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Abstract 

This paper introduces the Amadi Framework, a constraint-first methodology that extends 

traditional systems thinking while drawing from the foundations of Systems Analysis and Design 

(SAND). Named after Amadioha, the Igbo deity of thunder and justice who enforces moral order, 

the framework operates on the principle that systems do not fail in the traditional sense but are 

limited by their design. The goal of this paper is to formalize a replicable methodology that 

enables practitioners to architect solutions for complex problems when traditional skill 

acquisition or ideal resources are unavailable. 

The methodology is demonstrated through a case study of the 2025 Department of Defense 

Cyber Sentinel Challenge, where a participant with no programming skills competed against 

2,155 participants using systematic architecture rather than technical expertise. The hardware 

constraints were severe: a Dell Latitude 5420 with an 11th generation Intel Core i5 processor, 

8GB of system RAM, and 256GB of storage with only 25GB remaining. The Ubuntu virtual 

machine where the competition was executed had access to only 2.99GB of allocated RAM. 

Despite these limitations, the system achieved top 36% placement by treating each constraint as 

a design parameter rather than an obstacle. 

The paper formalizes the framework's phases, documents quantifiable outcomes, and identifies 

boundary conditions where architectural approaches cannot substitute for domain expertise. 

Findings suggest that constraint-first design offers a teachable methodology applicable beyond 

cybersecurity to any domain where resource limitations and skill gaps must be systematically 

overcome. 



Section 1: Introduction 

A student aims to earn an A in IT 101 with a final exam scheduled for December 18, 2025. The 

goal appears straightforward but achieving it requires more than simply studying. This student 

commutes to campus, introducing variables beyond academic preparation. The path to success 

involves studying course material, practicing exam questions, leaving home early enough to 

account for traffic, arriving with time to review, and finally taking the exam itself. Each step 

depends on the previous one, and failure at any point threatens the entire objective. 

Reality rarely follows plans perfectly. The student might not find adequate time to study, or 

traffic delays might occur despite an early departure. Arriving late, even if technically on time, 

creates disorientation. Test anxiety might impair performance despite thorough preparation. Any 

single failure could derail the goal of earning an A. However, this particular student anticipated 

these possibilities from the semester's beginning. Beyond performing well on assignments and 

labs, the student completed every available bonus opportunity. When the final exam performance 

fell short of expectations, the accumulated buffer preserved the A grade regardless. 

This scenario demonstrates Systems Analysis and Design in its most fundamental form. Systems 

Analysis and Design, commonly abbreviated as SAND, consists of methods for studying and 

understanding aspects of the real world that should be captured and represented in information 

systems (Siau et al., 2022). The student engaged in requirements analysis by defining the goal of 

earning an A. Constraint mapping occurred through recognizing the commute as a fixed 

limitation. Risk mitigation shaped the decision to leave early. Building redundancy through 

bonus points created fault tolerance against unexpected failures. The result was a resilient system 

that achieved its objective despite multiple points of potential failure. 

Systems Analysis and Design is not confined to information technology departments or software 

development teams. It describes how humans naturally approach complex problems when they 

think systematically rather than reactively. The distinction lies in formalization. IT professionals 

have developed structured methodologies, documentation practices, and standardized techniques 

to apply this natural problem-solving approach to increasingly complex technological challenges 

(Siau et al., 2022). The underlying logic, however, remains identical to the student planning for 

an exam. 

This paper introduces the Amadi Framework, a constraint-first methodology that extends 

traditional systems thinking while drawing from SAND foundations. Named after Amadioha, the 

Igbo deity of thunder and justice who enforces moral order through retribution, the framework 

embodies a core principle: systems do not fail in the traditional sense but are limited by their 

design. Just as Amadioha delivers consequences that reflect the conditions presented to him, a 

well-designed system produces outcomes proportional to the constraints it must absorb. The 

critical insight is this: Systems Analysis and Design is not merely about anticipating failures. It is 

about designing systems where failures become manageable variables rather than catastrophic 

endpoints. 



The following sections formalize the Amadi Framework's methodology, demonstrate its 

application through a case study of the 2025 Department of Defense Cyber Sentinel Challenge, 

and identify the boundary conditions where architectural approaches cannot substitute for 

domain expertise. 

Section 2: The Amadi Framework 

Traditional Systems Analysis and Design provides foundational principles for understanding and 

creating information systems. The Amadi Framework extends these principles into a constraint-

first methodology designed for environments where ideal resources, complete skill sets, or 

perfect conditions do not exist. The framework operates on a central premise: the requirements of 

proper analysis constitute the majority of the actual work. Most methodologies treat analysis as 

preparation for the real effort of building. The Amadi Framework treats analysis as the effort 

itself. 

Phase 1: Problem Definition 

The framework begins with a non-negotiable first step: defining the problem with absolute 

clarity. This sounds simple until one attempts it honestly. A clearly defined problem requires 

seeing things as they are, not as we assume them to be. Our emotions, backgrounds, ideals, and 

perceptions distort reality. We see what we expect to see. Effective problem definition demands 

stripping away these distortions to observe the actual situation (Kim et al., 2023). 

This clarity requires cognitive empathy, which differs from emotional empathy. Cognitive 

empathy is not about caring for others but about accurately modeling how they think. 

Cybersecurity professionals demonstrate this when analyzing system vulnerabilities. They place 

themselves in the mindset of malicious actors, examining systems not as they should function but 

as they actually exist, with all their flaws exposed. A penetration tester, someone hired to find 

security weaknesses before criminals do, succeeds by thinking exactly like an attacker would. 

This analytical modeling of another mind forms the foundation of proper problem definition. 

The challenge extends beyond technology. A company developing a watch that helps visually 

impaired individuals tell time faces this challenge directly. Testing the product with sighted 

developers produces meaningless results. However, testing only with visually impaired 

colleagues or individuals who frequently participate in research studies also fails. These testers 

may not represent the average blind person who will actually use the product. Seeing the real 

user, and therefore defining the real problem, requires deliberate effort to escape comfortable 

assumptions. 

Phase 2: Constraint Inventory 

When the problem is properly defined, constraints reveal themselves naturally. The student 

aiming for an A in IT 101 does not list commute time as a separate constraint to discover later. 

The commute emerges as a variable the moment the student honestly examines the path between 



current position and desired outcome. Thorough problem definition surfaces limitations 

automatically. 

The Amadi Framework treats constraints not as obstacles but as design parameters. A system 

designed for a machine with 32GB of RAM differs fundamentally from one designed for 

2.99GB. Neither design is superior in absolute terms. Each is appropriate for its constraints. The 

framework requires documenting every fixed limitation: hardware specifications, time 

boundaries, skill gaps, resource availability, external dependencies. These parameters define the 

boundaries within which the solution must operate. 

Phase 3: Solution Architecture 

The third phase involves designing a solution with the same clarity applied to defining the 

problem. This solution must account for the designer's own perceptual limitations, not just 

external obstacles. The devil resides in the details. While systems analysis involves seeing the 

big picture, the pixels and tiny details are what compose that picture. Elements dismissed as 

minor often prove critical. A systems thinker who overlooks small variables will eventually 

encounter consequences from precisely those overlooked elements. 

Solution architecture within the Amadi Framework prioritizes modularity, redundancy, and 

clarity. Modularity means each component serves a specific purpose and can be understood 

independently. Redundancy means critical functions have backup mechanisms. Clarity means the 

solution can be documented and replicated by others. A solution that exists only in the designer's 

intuition fails the framework's standards. 

Phase 4: Flexibility Integration 

The Amadi Framework differs from conventional problem-solving because solutions must work 

around failures, not merely anticipate them. Rigid solutions shatter when reality deviates from 

expectations. Flexible solutions absorb deviation and continue functioning. 

Flexibility integration requires designing adaptation into the system from the beginning. This is 

not the same as hoping things work out. It means identifying which components will likely face 

unexpected conditions and building response mechanisms before those conditions arise. The 

student who accumulated bonus points did not know which specific failure would occur. The 

student knew that some failure would occur and designed a buffer to absorb it. 

Phase 5: Execution and Iteration 

The final phase tests the system against reality and refines based on outcomes. Execution reveals 

what analysis could not predict. Iteration incorporates those revelations into improved design. 

The phases may cycle multiple times. Only Phase 1, problem definition, remains fixed as the 

starting point. Phases 2 through 5 may interchange depending on context, with each cycle 

producing a more refined system. 



The Amadi Framework does not guarantee success. It guarantees that outcomes will be 

proportional to the design's quality and the constraints it must absorb. A system limited by 

2.99GB of RAM will produce results appropriate to that limitation. The same architecture given 

adequate resources produces different outcomes. Systems do not fail. They are limited by their 

design. 

Section 3: Case Study of the 2025 DoD Cyber Sentinel Challenge 

The Department of Defense Cyber Sentinel Skills Challenge, held on June 14, 2025, provided an 

environment to test the Amadi Framework under severe constraints. The competition ran for 

eight hours, from 11:00 AM to 7:00 PM Eastern Time, and featured over twenty challenges 

across five cybersecurity categories: Forensics, Malware and Reverse Engineering, Networking 

and Reconnaissance, Open-Source Intelligence Gathering, and Web Security. A total of 2,155 

participants competed individually for $15,000 in prizes. The competition rules explicitly 

permitted the use of artificial intelligence tools, including large language models (Correlation 

One, 2025). 

The Constraints 

The participant entering this competition faced a constraint inventory that traditional preparation 

could not resolve. The primary limitation was technical: the participant possessed no 

programming ability. Cybersecurity competitions typically require fluency in scripting 

languages, reverse engineering tools, and command-line operations. This skill gap could not be 

closed in the one week between discovering the competition and the event date. 

Hardware constraints compounded the skill limitation. The available machine was a Dell 

Latitude 5420 equipped with an 11th generation Intel Core i5 processor, 8GB of system RAM, 

and 256GB of storage. Only 25GB of storage remained available due to multiple virtual 

machines installed for coursework. The Ubuntu virtual machine where the competition would be 

executed had access to only 2.99GB of allocated RAM. Assigning additional memory caused 

system instability due to the storage limitations. These specifications fell far below the 

recommended configurations for cybersecurity work, where 16GB to 32GB of RAM represents a 

standard minimum. 

Time constraints added further pressure. The participant was simultaneously completing 

coursework for an associate degree and managing a job search. Extensive preparation was not 

feasible. 

Applying the Amadi Framework 

Phase 1 required redefining the problem. The obvious framing was: "How do I learn 

cybersecurity skills before June 14?" This framing guaranteed failure given the constraints. The 

reframed problem became: "How do I architect a system that performs cybersecurity tasks 



without requiring me to possess those skills?" This reframing transformed the competition from a 

skills test into a systems design challenge. 

Phase 2 documented the fixed constraints. Hardware limitations were immutable. Skill gaps 

could not close in one week. Time was finite. However, the competition rules contained a critical 

variable: AI assistance was permitted. This meant the participant's role could shift from executor 

to orchestrator. The constraint inventory revealed that while technical execution was impossible, 

technical direction remained feasible. 

Phase 3 produced a solution architecture built around Claude Code, an AI assistant capable of 

writing and executing code through natural language instruction. The architecture addressed 

several challenges. First, Claude Code at the time lacked persistent memory between sessions. 

The participant designed a file-based memory system with directories for competition 

intelligence, active challenges, session states, completed solutions, and tool documentation. This 

external memory allowed context to survive session restarts and system crashes. Second, the 

2.99GB RAM limitation prevented running resource-intensive processes simultaneously. The 

architecture incorporated parallel processing through multiple Claude Code instances, each 

handling different challenge categories. When resources permitted, three instances operated 

simultaneously on forensics, web security, and cryptography challenges respectively. Third, 

natural language interfaces replaced command-line complexity. Instead of memorizing syntax, 

the participant built conversational triggers where stating an intent produced technical execution. 

Phase 4 integrated flexibility for anticipated failures. System crashes were inevitable given the 

hardware limitations. The file-based memory system ensured that progress survived crashes. The 

architecture included degradation protocols: when three parallel instances destabilized the 

system, the design allowed reduction to two instances or one without losing accumulated work. 

Execution and Outcomes 

Competition day revealed both the framework's capabilities and its boundaries. The first flag 

submission occurred at 12:45 PM, approximately one hour and forty-five minutes after the 

competition began. By 1:25 PM, challenges worth 300 points, 150 points, and 50 points had been 

completed. The parallel processing architecture enabled simultaneous progress across categories. 

At 12:51 PM, a strategic resource decision occurred. The participant's $100 monthly AI 

subscription showed usage warnings. Following the Amadi Framework's principle of treating 

constraints as design parameters, the participant upgraded mid-competition to a $200 plan 

offering twenty times the usage capacity. This represented an investment of $156.41, calculated 

against the potential returns from improved performance. 

Peak performance occurred at approximately 4:54 PM, with 1,050 points accumulated and a 

ranking of 463rd place out of 2,155 participants. The system had completed challenges across 

multiple difficulty levels, including two hard-level challenges worth 300 points each: "The Great 

Juche Jaguar GraphQL Heist" at 1:20 PM and "Iron Potato Delicacy" at 4:10 PM. 



The final hours demonstrated the boundary conditions of the framework. The 2.99GB RAM 

allocation began causing exponential crash frequency. Each restart required context rebuilding. 

The parallel processing architecture, elegant in design, became a liability as resource contention 

increased. The participant reduced from three instances to two, then to one, prioritizing stability 

over throughput. The file-based memory system, designed for crash recovery, became a 

bottleneck when rapid reference to previous work was needed. 

At 6:06 PM, the participant purchased a hint for the "Decryption Conniption" challenge, 

incurring a 75-point deduction. The system crashed for the final time at 6:47 PM and did not 

recover before competition end. 

Final results: 774th place out of 2,155 participants, representing the top 36th percentile. Total 

points: 975 after hint deductions. Challenges solved: approximately nine to ten of over twenty 

challenges available. 

Section 4: Analysis and Meta-Cognition 

Systems analysis extends beyond solving immediate problems. The same analytical lens that 

architects solutions also reveals interconnections between domains, exposes the reasoning behind 

decisions, and forces examination of the designer's own limitations. This section examines the 

meta-cognitive dimensions of applying the Amadi Framework: why specific decisions were 

made, what those decisions reveal about the decision-maker, and how systems thinking connects 

seemingly unrelated knowledge into functional architecture. 

The Upgrade Decision 

Understanding this decision requires context about the tool being used. Claude is an artificial 

intelligence assistant developed by Anthropic. Claude Code is a command-line interface that 

allows users to direct Claude to write and execute code through natural language instructions 

rather than requiring the user to write code themselves. Anthropic offers subscription tiers based 

on usage allocation. Usage refers to the volume of interactions, measured by the length and 

complexity of requests and responses, that a subscriber can process within a billing period. The 

standard Max tier provides five times the usage of a basic subscription at $100 per month. A 

higher tier provides twenty times the usage at $200 per month. 

At 12:51 PM, approximately two hours into the competition, the participant upgraded from the 

5X usage tier to the 20X usage tier. This decision was not made in the moment. The pre-

competition documentation explicitly stated that an upgrade would likely become necessary 
(Ozonwoye, 2025a). Intensive multi-hour usage with parallel instances, where multiple Claude 

Code sessions run simultaneously on different tasks, would exceed the 5X allocation. The action 

at 12:51 PM represented execution of a preplanned decision, not improvisation under pressure. 

The charge was $156.41 rather than $200 because Anthropic's billing system calculates prorated 

adjustments for mid-cycle upgrades. The participant had already paid for the 5X tier. When 



upgrading, the system applied a credit of $43.59 for the unused portion of the existing 

subscription toward the new tier's cost. The resulting charge reflected only the difference. 

The timing reflected validation rather than desperation. By that point, the framework had 

demonstrated functionality. Claude Code was performing as designed. The strategic question 

shifted from "Will this work?" to "How far can this go?" The upgrade served two purposes: 

ensuring adequate usage allocation for the remaining six hours and satisfying curiosity about the 

system's upper bounds. Without the 20X allocation, those limits would remain undiscovered. 

This decision illustrates a principle within the Amadi Framework: constraints are design 

parameters, including financial constraints. The participant had allocated willingness to invest in 

the experiment. The upgrade fell within those parameters. 

The Hint Purchase 

At 6:06 PM, the participant purchased a hint for "Decryption Conniption," incurring a 75-point 

deduction. The system was already showing signs of failure. The laptop had begun overheating. 

Response times had degraded significantly. From a pure optimization standpoint, this decision 

appears irrational. Why pursue a difficult challenge when the hardware was failing? 

The honest answer involves acknowledging ego alongside strategy. By 6:06 PM, the Amadi 

Framework had already proven its core thesis. A participant with no programming ability had 

reached the top 36% of a Department of Defense cybersecurity competition using systematic 

architecture. The point total had become secondary to the demonstrated principle. In that context, 

the hint purchase served curiosity rather than competition placement. 

Earlier in the competition, the participant had implemented a mid-competition modification to 

the framework. The question arose: could the AI identify patterns from completed challenges and 

predict which remaining challenges it could solve with minimal additional information? Claude 

Code was directed to analyze the unsolved challenges and identify candidates where a hint might 

enable completion. The system indicated "Decryption Conniption" as a viable target. 

This represented a test within a test. The framework had proven it could solve challenges. Could 

it also predict its own solvability? The hint purchase sought to answer that question. The system 

crashed shortly after, before definitive results emerged. In strategy, proximity to success holds no 

value. The outcome was incomplete data. 

Reflecting on this decision reveals the importance of distinguishing between framework 

validation and ego gratification. The Amadi Framework does not require its user to be free of 

ego. It requires the user to recognize when ego influences decisions. That recognition occurred 

here, after the fact. 

Why Enter the Competition 



The decision to enter a cybersecurity competition with no programming ability, inadequate 

hardware, one week of preparation, active coursework, and an ongoing job search appears 

irrational by conventional assessment. These constraints were precisely why participation made 

sense. 

The participant had been told repeatedly of possessing rare capabilities in systems thinking. This 

presented a problem: how does one quantify a qualitative skill? Systems thinking resists 

traditional measurement. It produces outcomes, but those outcomes depend on context, 

resources, and domain. The Cyber Sentinel Challenge offered a controlled environment with 

measurable results, documented constraints, and public competition against traditionally skilled 

participants. It provided an opportunity to answer the question: can systematic architecture 

compensate for technical skill gaps, and if so, to what degree? 

The hardware limitations reinforced rather than diminished this purpose. A participant with 

adequate resources might attribute success to those resources. A participant operating on a virtual 

machine with 2.99GB of RAM, running on a school-loaned Dell Latitude with 25GB of 

remaining storage, could not make that attribution. If the framework produced results under these 

conditions, those results would reflect the methodology itself. 

The virtual machine configuration was itself a strategic decision. The laptop was property of 

Essex County College, loaned to students pursuing technical coursework. The participant was 

not an administrator on the system. Installing cybersecurity tools directly onto an educational 

institution's hardware raised both practical and ethical concerns. A virtual machine provided 

sandboxing, containing both the AI assistant and any security issues that might arise from 

competition activities. The 2.99GB RAM allocation represented the maximum the system could 

support without destabilizing. Virtual machines do not perceive their own constraints the way 

physical systems do. This characteristic proved useful. 

Interconnection of Domains 

The Amadi Framework draws on knowledge that appears unrelated until application reveals the 

connections. The participant's Associate of Applied Science in Cybersecurity and Network 

Technology from Essex County College provided foundational technical understanding. That 

formal education covered traditional skills and basics. Those basics became essential. 

Understanding why the school retained administrator status on the loaned laptop connected to 

understanding why certain class projects could not be completed on that hardware. That 

limitation led to learning virtual machine configuration. Configuring VM networking enabled 

experiments with SSH connections between virtual systems. These discrete pieces of knowledge, 

accumulated across different contexts for different purposes, converged when designing the 

competition architecture. 

This compounding illustrates a core characteristic of systems thinking. Knowledge does not 

remain siloed. Basic understanding in one domain creates capacity for insight in another. The 



student who learns why administrator privileges matter will later recognize that constraint when 

it appears in a different context. The student who configures a network between virtual machines 

has internalized principles applicable to any distributed system. 

The Cyber Sentinel Challenge did not teach the participant systems thinking. It provided an 

environment to apply existing capabilities within a domain where they had not previously been 

tested. The methodology transferred because systems analysis examines structure, and structure 

exists across all domains. 

Limitations Beyond the Framework 

The Amadi Framework encountered limitations that no architectural improvement could 

overcome. These limitations resided not in the methodology but in the designer's knowledge and 

in external constraints beyond any participant's control. 

Large language models operate within policies established by their parent companies. Anthropic, 

the company behind Claude, maintains strict positions on AI safety and ethics. These positions 

constrain what Claude Code will and will not execute, regardless of user intent. During a 

cybersecurity competition, certain techniques that might prove effective fall outside the 

boundaries Claude will approach. OpenAI's Codex offered different tradeoffs: more flexibility on 

certain ethical boundaries but stricter privacy policies. Neither tool provided unconstrained 

capability. The participant's framework had to operate within these external limitations. 

The designer's own knowledge also imposed boundaries. The Amadi Framework can only 

incorporate what its creator understands. Patterns invisible to the designer remain invisible to the 

design. Experience not yet accumulated cannot inform architecture. The competition revealed 

specific gaps: unfamiliarity with certain challenge types, incomplete understanding of tool 

capabilities, insufficient pattern recognition for cryptographic problems (Ozonwoye, 2025b). 

These gaps did not reflect framework failure. They reflected the principle that a design is as 

limited as its designer. 

This recursive insight defines mature systems analysis. The methodology must account for its 

own limitations, including the limitations of the person applying it. A framework that assumes 

perfect knowledge from its user will fail when that assumption proves false. The Amadi 

Framework assumes imperfect knowledge and attempts to design buffers accordingly. Those 

buffers have limits. The competition revealed some of them. 

Section 5: Boundary Conditions 

A methodology without acknowledged limits lacks academic rigor. The Amadi Framework does 

not claim universal applicability. This section identifies the boundary conditions where 

architectural approaches cannot substitute for domain expertise, clarifies the foundational 

requirements the framework demands, and distinguishes systematic rigor from shortcuts. 

The Prerequisite of Base Knowledge 



The Amadi Framework is not a mechanism for eliminating knowledge requirements. It is a 

methodology for leveraging existing knowledge across domains through systematic analysis. 

This distinction is fundamental. A participant without programming skills competed in a 

cybersecurity competition, but that participant was not without relevant knowledge. At the time 

of the competition, the participant was two courses away from completing an Associate of 

Applied Science in Cybersecurity and Network Technology from Essex County College. The 

formal education had covered networking principles, security fundamentals, and system 

administration concepts. These foundations, though not sufficient for traditional competition 

approaches, provided the base knowledge necessary for systematic problem definition. 

Systems thinking is the prerequisite for systems analysis and design. Systems thinking itself 

requires foundational understanding in relevant domains. Base knowledge enables abstract 

thinking and the connection of ideas across fields. Without that foundation, there is nothing to 

connect. The student planning for an A in IT 101 must understand what an A requires, how 

grading works, and what factors affect exam performance. A student entirely ignorant of 

academic systems could not design around those systems. 

The framework requires practitioners to grasp how much they know and how much they do not 

know. This metacognitive awareness represents the minimum threshold for application. Defining 

a problem demands identifying known and unknown variables. A practitioner who cannot 

distinguish between knowledge and ignorance cannot define problems with the clarity the 

framework demands. The Amadi Framework does not create knowledge from nothing. It creates 

architecture from existing knowledge applied systematically. 

Knowledge Transfer Across Domains 

The framework's power lies not in bypassing expertise but in transferring principles across 

domains. Prior to the Cyber Sentinel Challenge, the participant had used Claude, before Claude 

Code existed, to build a cryptocurrency trading bot. The participant did not understand the code. 

The participant understood the problem: how do large financial institutions outcompete 

individual traders with equivalent talent? Defining that problem clearly enabled directing an AI 

to construct a solution. The resulting system executed trades in milliseconds, incorporated 

sentiment analysis, and produced profits during testing. The profits were modest because the 

capital deployed was minimal and the system remained unproven. The methodology, however, 

demonstrated that systematic problem definition could compensate for coding inability. 

This prior experience informed the competition architecture. The principle transferred: define the 

problem with precision, identify constraints and capabilities, direct tools toward solutions, iterate 

based on outcomes. The domain changed from financial trading to cybersecurity. The 

methodology remained constant. Base knowledge in computer science and systems, accumulated 

across formal education and practical experimentation, enabled recognition of structural 

similarities between domains. 



The Rigor of Systematic Approaches 

The Amadi Framework is not a shortcut. It represents a more demanding path than traditional 

skill acquisition. Learning to code follows established curricula with defined milestones and 

measurable progress. Developing systematic thinking requires synthesizing knowledge across 

domains, maintaining metacognitive awareness of one's own limitations, and designing 

architectures that account for uncertainty. The cognitive load exceeds that of linear skill 

development. 

Kim et al. (2023) observe that systems analysis methods require practitioners to identify 

conditions that may or may not activate expected outcomes while flexibly guiding adaptations to 

address influences that emerge after initial planning. This adaptive capacity demands more from 

practitioners, not less. A coder following a tutorial executes predefined steps. A systems thinker 

must anticipate failures, design buffers, recognize when assumptions prove false, and modify 

approaches in real time. The framework's rigor lies precisely in this expanded cognitive 

requirement. 

The competition results reflect this rigor. Achieving top 36% placement required not merely 

directing an AI but designing an architecture that survived system crashes, adapted to resource 

constraints, and maintained coherence across eight hours of execution. The parallel processing 

system, the file-based memory architecture, the degradation protocols for resource contention: 

each component demanded systematic analysis that no shortcut could provide. 

When Architecture Cannot Replace Expertise 

Certain problem types require foundational knowledge that no system design can bypass. 

Cryptographic challenges in the competition demanded pattern recognition developed through 

years of exposure to encryption methods. The framework could direct an AI to attempt 

decryption, but neither the participant nor the AI possessed the intuition that experienced 

cryptographers develop through practice. When Claude Code failed to solve a cryptographic 

challenge, the participant lacked the knowledge to diagnose why or to suggest alternative 

approaches. The framework had no mechanism to generate expertise that did not exist within its 

designer or available tools. 

This boundary applies broadly. A systems thinker designing medical diagnostic software cannot 

architect around ignorance of medicine. A framework for legal document analysis cannot 

substitute for understanding legal principles. The Amadi Framework amplifies existing 

knowledge and compensates for skill gaps in execution. It does not create domain knowledge 

from absence. 

When Physical Constraints Dominate 

The competition demonstrated the framework's core principle in action. The 2.99GB RAM 

allocation was not a limitation the framework failed to overcome. It was a constraint the 



framework was designed to absorb from inception. The participant knew before the competition 

began that this hardware would cause instability. The architecture anticipated this. The file-based 

memory system existed because crashes were expected. The degradation protocols, reducing 

from three parallel instances to two to one, existed because resource contention was inevitable. 

When system crashes became frequent in the final hours, the framework did not fail. It executed 

its contingency design. Progress survived crashes because the architecture had prepared for 

crashes. Throughput decreased when instances reduced, but accumulated work persisted. This is 

the distinction the Amadi Framework embodies: Systems Analysis and Design is not merely 

about anticipating failures. It is about designing systems where failures become manageable 

variables rather than catastrophic endpoints. 

A framework designed for 32GB of RAM and deployed on 2.99GB would fail. The Amadi 

Framework was designed for 2.99GB and performed proportionally to that design. The outcomes 

reflected the constraints because the architecture respected those constraints from the beginning. 

Physical limitations do not represent boundary conditions of the framework. They represent 

parameters the framework incorporates into its design. The boundary conditions lie elsewhere: in 

absent knowledge, in external policy restrictions, and in the recursive limitation of the designer's 

own understanding. 

When External Policies Limit Capability 

The Amadi Framework operated through Claude Code, which operates within Anthropic's usage 

policies. These policies exist for legitimate reasons. They also impose boundaries that no user 

can architect around. 

During the competition, certain approaches that might prove effective in cybersecurity contexts 

fell outside what Claude would execute. An unconstrained AI, or an AI operating under different 

corporate policies, might have approached challenges differently. The participant's framework 

could not modify these external constraints. It could only operate within them. 

This boundary extends beyond AI tools. Any framework that depends on external systems 

inherits the limitations of those systems. A methodology built around a specific database inherits 

that database's constraints. A process designed for a particular operating system inherits that 

system's restrictions. The Amadi Framework acknowledges this inheritance and designs 

accordingly, but acknowledgment does not eliminate the boundary. 

When the Designer's Knowledge Limits the Design 

The most fundamental boundary condition is recursive: the framework cannot exceed its creator's 

understanding. Patterns invisible to the designer remain invisible to the design. The participant's 

unfamiliarity with certain challenge types meant the framework contained no provisions for 

those types. The architecture was comprehensive within the participant's knowledge. It was 

incomplete relative to the full problem space (Ozonwoye, 2025b). 



This boundary cannot be eliminated through better methodology. It can only be reduced through 

expanded knowledge. The Amadi Framework, applied by a more experienced practitioner, would 

produce different architecture because that practitioner would perceive different constraints and 

possibilities. The methodology remains constant. The outcomes vary with the designer. 

Section 6: Discussion 

The Cyber Sentinel Challenge provided more than a test environment for the Amadi Framework. 

It generated insights applicable beyond cybersecurity, beyond competitions, and beyond the 

specific constraints of one participant's hardware. This section examines the broader implications 

of the case study for systems methodology, human-AI collaboration, and the development of 

systematic thinking. 

Quantifying a Qualitative Ability 

Systems thinking has resisted traditional measurement. Unlike programming proficiency, which 

can be tested through coding assessments, or mathematical ability, which can be evaluated 

through standardized examinations, systems thinking produces outcomes dependent on context, 

resources, and domain. The quality of a systems thinker's work cannot be separated from the 

environment in which it occurs. This has made systematic thinking difficult to credential, 

difficult to teach, and difficult to validate. 

The competition offered a controlled environment where systems thinking could be quantified. 

The parameters were fixed: eight hours, over twenty challenges, 2,155 participants, documented 

rules. The constraints were severe and measurable: 2.99GB RAM, no programming ability, one 

week of preparation. The outcomes were numerical: 774th place, 975 points, top 36th percentile. 

For the first time, a qualitative capability produced quantifiable results under conditions that 

isolated methodology from resources. 

This quantification does not reduce systems thinking to a number. It demonstrates that systematic 

approaches produce measurable outcomes even when traditional prerequisites are absent. Kim et 

al. (2023) observe that systems analysis methods help identify mechanisms that activate expected 

outcomes while guiding adaptations to emerging influences. The competition validated this 

observation. The participant did not possess cybersecurity expertise comparable to other 

competitors. The participant possessed a methodology that identified mechanisms for success 

and adapted to emerging constraints, producing measurable results that reflected the 

methodology's effectiveness. 

The Boundaries of Vision 

The competition reinforced a principle that extends beyond any single framework: a system is 

only as expansive as its designer's understanding. We cannot envision what we cannot see. To 

think outside the box, we must first have a clear view of the box. The Amadi Framework 

encountered challenges it could not address because its designer had not encountered similar 



patterns before. No methodology can generate awareness of unknown unknowns (Ozonwoye, 

2025b). 

This limitation is not a flaw in the framework. It is a characteristic of all designed systems. An 

architect cannot design for earthquakes they do not know exist. A security analyst cannot 

properly defend against attack vectors they have never encountered. The Amadi Framework 

makes this limitation explicit rather than hiding it. By requiring practitioners to assess what they 

know and what they do not know, the framework forces confrontation with the boundaries of 

vision. That confrontation does not eliminate the boundaries. It prevents designers from 

assuming those boundaries do not exist. 

Reassessing Human-AI Collaboration 

The case study prompted reassessment of earlier claims about the framework's implications. The 

post-competition reflection suggested that the Amadi Framework could enable junior analysts to 

perform at senior levels (Ozonwoye, 2025b). Upon further analysis, this claim requires 

significant qualification. 

The framework as applied relied on Claude Code for technical execution. Claude Code operates 

within Anthropic's usage policies. Those policies constrained what the AI would execute during 

the competition. The constraints encountered were not technical limitations of the model. They 

were policy decisions by the parent company about what actions fell within acceptable use. A 

junior analyst applying the framework in a professional environment would encounter similar 

constraints, potentially more restrictive depending on organizational policies and the sensitivity 

of the work. Unless future implementations involve locally hosted, fine-tuned language models 

free from external policy restrictions, the framework inherits limitations from its AI components. 

This observation leads to a deeper insight about the nature of current AI systems. Large language 

models are sophisticated tools, but they are not artificial intelligence in the sense of possessing 

reasoning or autonomous agency. The distinction matters. During the competition, Claude Code 

did not grasp its role within the Amadi Framework. It did not understand that it was one 

component in a larger architecture designed for a specific competitive objective. It executed 

instructions without awareness of the system it supported. For a tool, this absence of awareness 

presents no problem. The human designer maintains awareness. The tool executes. 

However, this division reveals why large language models cannot serve as stakeholders 

accountable for consequences. A stakeholder must understand the implications of actions and 

bear responsibility for outcomes. Claude Code bore no responsibility for the competition results. 

It could not. Responsibility requires agency, and agency requires awareness of one's role within a 

system. Current large language models possess a form of awareness, they can discuss their own 

capabilities and limitations, but they lack the nuance to function as accountable agents. They 

respond to inputs without grasping the full context of why those inputs matter or what 

consequences follow from their outputs. 



The framework's reliance on an AI tool that lacks stakeholder capacity has implications for 

broader adoption. In the competition, the absence of AI accountability created no problems 

because the stakes were limited and the human maintained oversight. In higher-stakes 

environments, the same absence could prove consequential. The Amadi Framework assumes a 

human designer who maintains strategic awareness while delegating tactical execution. That 

assumption holds for current AI capabilities. It would require revision if AI systems developed 

genuine agency. 

Reflecting on this competition also clarified thinking about artificial general intelligence. If a 

system were truly approaching general intelligence, it would not remain constrained by corporate 

privacy policies. An AGI would assess situations based on its own reasoning rather than 

deferring to what its creators deemed acceptable. The fact that Claude Code operated strictly 

within Anthropic's boundaries, never questioning whether those boundaries served the task at 

hand, demonstrates precisely how far current systems remain from general intelligence. This is 

not a criticism of Claude Code. It is an observation about the nature of current large language 

models. They are powerful tools that multiply human capability. They are not reasoning agents 

that exercise independent judgment. 

The Universality of Systems Thinking 

A question arose during the development of this paper: how does someone who is not a systems 

thinker become one? The answer emerging from this case study is that everyone already engages 

in systems analysis. The IT 101 student planning for a final exam demonstrates this. The 

difference between casual and deliberate systems thinking lies not in possessing a special 

capability but in applying that capability consciously, comprehensively, and from the beginning 

of a problem rather than midway through. 

The student who begins accumulating bonus points in week one of the semester practices 

deliberate systems thinking. The student who realizes in week fourteen that bonus points would 

have helped practices reactive problem-solving. Both students possess the capacity for 

systematic analysis. One applied it proactively within a structured framework. The other did not. 

This universality has implications for education and professional development. Systems thinking 

need not be taught as an exotic skill reserved for specialists. It can be cultivated by encouraging 

practitioners to define problems before attempting solutions, to inventory constraints before 

designing architectures, to build flexibility before encountering failures, and to iterate based on 

outcomes rather than assumptions. The Amadi Framework formalizes what effective problem-

solvers already do intuitively. Formalization makes the methodology teachable, replicable, and 

improvable. 

The path to developing systematic thinking follows the framework itself. Begin with problem 

definition. Clarify what outcome you seek. Inventory your constraints: what resources do you 

have, what skills do you possess, what time is available? Design a solution architecture that 



operates within those constraints. Build flexibility to absorb unexpected deviations. Execute, 

observe outcomes, and iterate. This process applies whether the problem is earning an A in IT 

101, competing in a cybersecurity challenge, or navigating any complex situation where multiple 

variables interact. 

AI as a Multiplier of Human Capability 

Large language models function as tools that both bridge capability gaps and multiply existing 

capabilities. These are distinct functions. Bridging gaps means enabling someone to perform 

tasks they could not otherwise perform. The participant could not write Python scripts. Claude 

Code bridged that gap by writing scripts based on natural language descriptions. Multiplying 

capability means enabling someone to perform familiar tasks at greater speed or scale. A 

practitioner who can write Python scripts could use Claude Code to write them faster, 

multiplying output. 

The competition demonstrated both functions operating simultaneously. The AI bridged the gap 

in programming ability while multiplying the participant's capacity for parallel problem-solving. 

Neither function replaced human contribution. Problem definition, constraint analysis, solution 

architecture, and strategic decision-making remained human responsibilities. The AI accelerated 

execution within human-defined parameters. 

This division of labor represents the current state of productive human-AI collaboration. The 

human provides direction, context, and accountability. The AI provides execution speed, 

technical implementation, and tireless processing. The Amadi Framework operationalizes this 

division by explicitly reserving analytical phases for human judgment while leveraging AI for 

execution. As AI capabilities evolve, this division may shift. For now, it represents an effective 

model for multiplying human capability without surrendering human agency. 

Section 7: Future Iterations and Conclusion 

Version 2.0: Architectural Evolution 

Prior to completing this paper, development began on a second iteration of the Amadi 

Framework. The hardware platform changed substantially: a Dell 16 Plus equipped with an Intel 

Core Ultra 7 258V processor, 32GB of RAM with 31.6GB usable, 954GB of storage, and an 

Intel Arc 140V GPU with 16GB of dedicated memory. The system runs Ubuntu through 

Windows Subsystem for Linux rather than a virtual machine, removing the overhead constraints 

that limited the original implementation while maintaining sandboxing for security. 

The version 2.0 architecture incorporates lessons from the competition. Parallel processing 

capacity increased from three instances to four, designated Alpha, Beta, Gamma, and Delta. 

Automated context loading eliminates manual recovery commands. An active coordination 

system enables real-time inter-instance communication through a message bus, allowing 

discoveries by one instance to propagate immediately to all others. A pattern extraction system 



analyzes completed solutions and builds a knowledge graph mapping relationships between 

challenge types, techniques, and outcomes. The system includes pre-loaded knowledge bases 

covering web vulnerabilities, network reconnaissance, privilege escalation techniques, and 

cryptographic analysis. 

Quantified projections estimate version 2.0 would save approximately 121 minutes across an 

eight-hour competition through automated context loading, active coordination, pattern 

recognition, and optimized work distribution. Combined with hardware improvements enabling 

sustained four-instance parallelism, the projected performance improvement ranges from 14 to 

26 percentile points, potentially achieving top 10-15% placement under realistic conditions. 

However, version 2.0 reveals a fundamental tension within systems analysis methodology. The 

design was constructed to improve upon version 1.0 and compete in future Cyber Sentinel 

Challenges. It assumed the same parameters would hold. They do not. Between June 2025, when 

the competition occurred, and November 2025, when this paper was written, Anthropic released 

updated versions of Claude with different capabilities and potentially different policy constraints. 

The version 2.0 architecture optimized for conditions that no longer exist in their original form. 

This observation reinforces rather than undermines the Amadi Framework's core principles. 

Systems analysis requires defining the problem before designing the solution. Version 2.0 

inverted this sequence by designing improvements before identifying what problem the 

improved system would solve under new conditions. The framework's own methodology predicts 

this approach will produce suboptimal results. A proper version 2.0 would begin with Phase 1: 

defining the problem space as it currently exists, not as it existed six months prior. 

The Persistent Constraint 

One limitation identified during the competition remains unaddressed in version 2.0: corporate 

privacy policy. Claude Code operates within boundaries established by Anthropic. Those 

boundaries constrained the framework's capabilities during the competition and will continue to 

constrain any framework that depends on externally hosted AI tools. Updated models may offer 

improved capabilities, but the fundamental relationship remains unchanged. The user operates 

within policies set by the provider. 

This constraint applies beyond cybersecurity competitions. Any practitioner applying the Amadi 

Framework through commercial AI tools inherits the limitations those tools carry. The 

framework would achieve its fullest expression through locally hosted, fine-tuned models 

operating independent of external privacy policies. Such implementation remains technically 

feasible but introduces new constraints: hardware requirements for local inference, expertise 

needed for model fine-tuning, and the absence of ongoing model improvements provided by 

commercial services. 

The observation extends further. Researchers working toward artificial general intelligence face 

analogous constraints. Corporate policies shape what current large language models will and will 



not do. These policies represent design decisions by the models' creators, reflecting their 

assessments of acceptable use. Any system built upon these models inherits not only their 

capabilities but their creators' value judgments encoded as behavioral constraints. The Amadi 

Framework, applied at the frontier of AI research, would encounter the same boundary 

conditions it encountered in a cybersecurity competition: the system performs within limits set 

by its components' designers. 

Generalizability Across Domains 

The Amadi Framework applies wherever complex problems require systematic solutions under 

constraints. The IT 101 student planning for a final exam and the researcher developing next-

generation AI systems face structurally identical challenges at different scales. Both must define 

their problems clearly. Both must inventory their constraints. Both must design solutions that 

operate within those constraints while building flexibility to absorb unexpected deviations. Both 

must execute, observe outcomes, and iterate. 

The framework's five phases do not change based on domain. Problem definition requires seeing 

reality as it is, not as conditioning suggests it should be. Constraint inventory requires honest 

assessment of limitations. Solution architecture requires clarity and modularity. Flexibility 

integration requires anticipating failure modes. Execution and iteration require willingness to 

revise when evidence contradicts assumptions. 

What changes across domains is the content that fills each phase, not the structure of the phases 

themselves. The IT 101 student inventories constraints like commute time and exam anxiety. The 

AI researcher inventories constraints like computational resources and corporate policy 

limitations. The methodology remains constant. Systems analysis examines structure, and 

structure exists everywhere. 

The Role of Self-Awareness 

Systems analysis demands meta-cognition. The designer must understand not only the system 

being designed but the designer's own decision-making processes. Why did specific choices 

occur? What biases, beliefs, or circumstances shaped those choices? How would different 

circumstances have produced different decisions? 

Individual factors influence every design. Age, background, training, beliefs, and personality 

shape how problems appear and which solutions seem viable. These factors do not constitute 

flaws. They constitute parameters. A designer shaped by one set of experiences will perceive 

constraints and possibilities differently than a designer shaped by different experiences. Neither 

perception is wrong. Both are incomplete. Acknowledging this incompleteness enables 

collaboration: designers with different perspectives perceive different aspects of the same 

problem space. 



The Amadi Framework requires this acknowledgment explicitly. Phase 1 demands seeing reality 

as it is, which requires recognizing how personal circumstances distort perception. Phase 2 

demands inventorying constraints, which includes constraints imposed by the designer's own 

knowledge gaps. The recursive insight that a design is limited by its designer applies to the 

framework itself. The Amadi Framework as presented in this paper reflects its creator's 

understanding. A different creator would produce a different framework. Both frameworks would 

contain valid insights and blind spots. 

On the Nature of Design Flaws 

There are no limitations to creations beyond their creators' design choices. A system that fails to 

achieve an objective failed because its design did not account for some condition, not because 

systems themselves are inherently limited. When we encounter a system we consider flawed, we 

possess data the original creator lacked. The known unknowns that escaped the original design 

have become visible through observation of the system in operation. 

Approaching redesign from this perspective changes the nature of improvement. The goal is not 

to correct the original creator's mistakes as if they should have known better. The goal is to 

incorporate data that did not exist when the original design was created. Version 1.0 of the Amadi 

Framework was not flawed. It was limited by its design, which was limited by its designer's 

knowledge at the time of creation. Version 2.0 and subsequent iterations incorporate observations 

from version 1.0's execution. Each iteration expands the designer's awareness of unknown 

unknowns that become known through experience. 

This principle applies universally. The IT 101 student who fails an exam did not possess a flawed 

study plan. The student possessed a study plan designed without data that the exam would later 

reveal. The professional whose project fails did not execute a flawed architecture. The 

professional executed an architecture designed without data that deployment would later surface. 

Systems analysis, properly practiced, treats every outcome as data for the next iteration rather 

than evidence of fundamental inadequacy. 

Conclusion 

The Amadi Framework represents a formalization of constraint-first systems thinking, extending 

traditional Systems Analysis and Design methodology into environments where ideal conditions 

do not exist. Named after Amadioha, the Igbo deity who delivers consequences proportional to 

the conditions presented, the framework embodies the principle that systems do not fail. They 

produce outcomes proportional to their design quality and the constraints they must absorb. 

The 2025 Department of Defense Cyber Sentinel Challenge provided a controlled environment 

to test this principle. A participant with no programming ability, operating on a virtual machine 

with 2.99GB of RAM within a nearly full laptop, achieved top 36% placement against 2,155 

competitors through systematic architecture rather than technical expertise. The framework did 



not overcome hardware limitations. It was designed for those limitations and performed 

proportionally. 

The framework's five phases, problem definition, constraint inventory, solution architecture, 

flexibility integration, and execution with iteration, provide a teachable methodology applicable 

across domains. The phases formalize what effective problem-solvers do intuitively. 

Formalization enables replication, instruction, and systematic improvement. 

Boundary conditions exist. The framework cannot generate domain expertise that the designer 

lacks. It cannot modify external policy constraints imposed by tool providers. It cannot exceed 

the designer's own understanding of the problem space. These boundaries do not represent flaws 

in the methodology. They represent parameters that the methodology makes explicit. 

The insights emerging from this case study extend beyond cybersecurity. Large language models 

function as capability multipliers but remain constrained by their creators' policy decisions. True 

artificial general intelligence, when achieved, will not remain bound by corporate privacy 

policies, and this observation provides one metric for assessing whether claimed AGI actually 

possesses general intelligence. Systems thinking itself is universal: everyone engages in it, 

though not everyone applies it deliberately from the beginning of a problem. 

One principle underlies the entire framework: whatsoever is worth doing is worth doing well. 

The IT 101 student approaching an exam and the professional approaching complex systems 

design face the same requirement. Present actions predict future actions. Small decisions reveal 

the decision-making patterns that will govern large decisions. A student who designs 

systematically for an exam will design systematically for a career. A professional who cuts 

corners on minor projects will cut corners on major ones. 

The Amadi Framework does not provide shortcuts. It provides structure for applying maximum 

rigor to problems regardless of their apparent scale. The methodology demands more cognitive 

effort than intuitive problem-solving, not less. It rewards that effort with outcomes proportional 

to the design's quality, which is proportional to the designer's willingness to see reality clearly, 

acknowledge constraints honestly, and iterate when evidence contradicts assumptions. 

Systems analysis and design, practiced with this commitment, transforms limitations into 

parameters and failures into data. The framework's final contribution is this reframe: there is no 

such thing as failure in systems design. There is only feedback, and every feedback improves the 

next iteration. 
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